A Clustering Optimization Strategy for Molecular Taxonomy Applied to Planktonic Foraminifera SSU rDNA
نویسندگان
چکیده
Identifying species is challenging in the case of organisms for which primarily molecular data are available. Even if morphological features are available, molecular taxonomy is often necessary to revise taxonomic concepts and to analyze environmental DNA sequences. However, clustering approaches to delineate molecular operational taxonomic units often rely on arbitrary parameter choices. Also, distance calculation is difficult for highly alignment-ambiguous sequences. Here, we applied a recently described clustering optimization method to highly divergent planktonic foraminifera SSU rDNA sequences. We determined the distance function and the clustering setting that result in the highest agreement with morphological reference data. Alignment-free distance calculation, when adapted to the use with partly non-homologous sequences caused by distinct primer pairs, outperformed multiple sequence alignment. Clustering optimization offers new perspectives for the barcoding of species diversity and for environmental sequencing. It bridges the gap between traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both genetic divergence and given species concepts.
منابع مشابه
SSU rDNA Divergence in Planktonic Foraminifera: Molecular Taxonomy and Biogeographic Implications
The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These geneti...
متن کاملUsing the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly Divergent and Length-polymorphic SSU rDNA Sequences
The high sequence divergence within the small subunit ribosomal RNA gene (SSU rDNA) of foraminifera makes it difficult to establish the homology of individual nucleotides across taxa. Alignment-based approaches so far relied on time-consuming manual alignments and discarded up to 50% of the sequenced nucleotides prior to phylogenetic inference. Here, we investigate the potential of the multiple...
متن کاملExtreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record.
Foraminifera have one of the best known fossil records among the unicellular eukaryotes. However, the origin and phylogenetic relationships of the extant foraminiferal lineages are poorly understood. To test the current paleontological hypotheses on evolution of foraminifera, we sequenced about 1,000 base pairs from the 3' end of the small subunit rRNA gene (SSU rDNA) in 22 species representing...
متن کاملMolecular versus taxonomic rates of evolution in planktonic foraminifera.
Neogene planktonic foraminifera are among the most widely used microfossils in the study of tempo and mode of evolution. Comparisons of taxonomic rates between the two major clades in this group have shown that the nonspinose globorotaliids have undergone a significantly more rapid evolutionary turnover than the spinose globigerinids (S. M. Stanley et al., 1988, Paleobiology 14, 235-249). In or...
متن کاملA multigene analysis of Corallomyxa tenera sp. nov. suggests its membership in a clade that includes Gromia, Haplosporidia and Foraminifera.
We combine a morphological description with a multigene analysis to assess the phylogenetic placement of a poorly known amoeboid taxon Corallomyxa within the eukaryotic tree of life. A detailed morphological analysis including transmission electron microscopy and light microscopy of Corallomyxa sp. ATCC 50975 demonstrates that this isolate is a new species, herein designated, Corallomyxa tenera...
متن کامل